The Squid Galaxy's neutrino game just leveled up

In space, energetic neutrinos are usually paired with energetic gamma rays. Galaxy NGC 1068, however, emits strong neutrinos and weak gamma rays, which presents a puzzle for scientists to solve. A new paper posits that helium nuclei collide with ultraviolet photons emitted by the galaxy's central region and fragment, releasing neutrons that subsequently decay into neutrinos without producing gamma rays. The finding offers insight into the extreme environment around the supermassive black holes at the center of galaxies like NGC 1068 and our own and enhances our understanding of the relationships between radiation and elementary particles that could lead to technological advances we haven't yet imagined.

The Squid Galaxy's neutrino game just leveled up
In space, energetic neutrinos are usually paired with energetic gamma rays. Galaxy NGC 1068, however, emits strong neutrinos and weak gamma rays, which presents a puzzle for scientists to solve. A new paper posits that helium nuclei collide with ultraviolet photons emitted by the galaxy's central region and fragment, releasing neutrons that subsequently decay into neutrinos without producing gamma rays. The finding offers insight into the extreme environment around the supermassive black holes at the center of galaxies like NGC 1068 and our own and enhances our understanding of the relationships between radiation and elementary particles that could lead to technological advances we haven't yet imagined.

What's Your Reaction?

like

dislike

love

funny

angry

sad

wow